
2020 DOE VEHICLE TECHNOLOGIES ANNUAL MERIT REVIEW

JUNE 2020

ENERGY-EFFICIENT CONNECTED AND 
AUTOMATED VEHICLES – EEMS016

DOMINIK KARBOWSKI, JONGRYEOL JEONG, DALIANG SHEN, JIHUN HAN, NAMDOO KIM, YAOZHONG ZHANG 

Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Project Overview
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Timeline

▪ Project start: Oct. 2016

▪ Project end: Sep. 2019

▪ Percent complete: 100%

Budget

▪ Total Funding (3 years): $2.3M

▪ FY19 Funding: $850,000

▪ FY20 Funding: $0

Partners

▪ Argonne: lead

▪ LLNL, LBNL: test data 

Barriers

▪ Development of Connected and Automated 
Vehicles (CAVs) not driven by energy-efficiency

▪ Eco-driving research rarely integrates 
advanced powertrain technologies 

▪ Combining dynamics and powertrain control 
results in complex control problems

▪ Real-world implementation often challenging

▪ Many exogenous factors (e.g. traffic), affect 
energy saving potential of eco-driving

▪ Lack of practical tools for “powertrain-aware” 
eco-driving algorithm development



Objectives and Relevance

3

Minimize Fuel/Energy considering:

▪ Immediate traffic (preceding vehicle)

▪ Traffic regulations 

▪ Speed limits

▪ Traffic lights

▪ Stop signs

▪ Road condition (grade)

▪ Powertrain type and operations

#1: CAV Eco-Driving Control

Requirements:

▪ Real-world implementable 

▪ Able to work for entire missions

Automation: enables 

control of vehicle speed

Connectivity, sensors, maps: 

provide information for optimization



Objectives and Relevance
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Multi-Vehicle
1-10 vehicles

Road
Speed limits, grade, 

traffic lights

Driver
Human or Automated

V2X Connectivity

Powertrain
Conv., HEV, EV, etc.

Perception Sensors

#2: CAV Simulation Framework

Energy impact of current and 

future CAV technologies

Development of CAV for 

energy-efficiency



Approach
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Driving Scenarios
Energy 

Impacts

➢ Future horizon >> most energy-

efficient state & control trajectory 

(speed, torque, SOC, etc.)

➢ Optimal control, Quadratic 

programming, etc.

CAV Eco-Driving: Control of Powertrain AND Longitudinal Speed

Real-World Data
CAV Modeling and Validation

Platooning, ACC, Human Driving

Powertrains

Chassis Dyno

Track

On-road

A. Optimization & Trajectory planning B. Real-Time Control

➢ Current state >> what command to follow 

optimal state & ctrl. trajectory?

➢ MPC, Feedback loops, transients, dynamics

SC x
u

P

xT



Milestones
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2019 
Q1

2019 
Q2

2019 
Q3

2019 
Q4

Eco-driving: Demonstrate a "real-world 

implementable" controller working online 

in RoadRunner environment

✓ Complete
Quantify energy impact of 

advanced optimal eco-driving 

over a range of representative 

scenarios

✓ Complete

RoadRunner: Complete the 

development and validation of 

human and automated driver models. 

✓ Complete



ACCOMPLISHMENTS
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RoadRunner: 
Simulation Tool for 
Energy-Efficient CAV 
Control Development



Human Driver

Truck Platooning

Prius Prime ACC

Validated Several Models for RoadRunner
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Simulation of Powertrain and 

Driving Dynamics for CAV

Gap

Dashcam

Video

GPS 

CAN & Radar  8



ACCOMPLISHMENTS
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Energy-Efficient CAV 
Control Development



Various Types of Control Optimization
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Optimization Speed-only Speed + Powertrain

Powertrain type Any EV ICEV HEV

Control variables Acceleration
Motor torque

Engine torque Motor & engine torques

Gear shifting

Brake force

Cost function to minimize Acceleration “energy” Battery energy Fuel mass Equivalent energy consumption

S
u

b
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c
t 

to

System dynamics Vehicle dynamics Vehicle dynamics including powertrain operation

State constraints Speed limits and preceding vehicle

Interior-point 

constraints
Traffic signal phase and timing (SPaT) [when V2I enabled]

Boundary conditions Final position and final speed given initial position and speed

Im
p
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m

e
n

ta
b

il
it

y Execution speed

Robustness and 

adaptation for 

implementation

Very robust and no 

need to adapt to vehicle 

type

• Speed + Powertrain optimization needs adaptation (new code generation) 

according to the type of powertrain

• Requires more calibration (e.g. trade-off drivability and efficiency)

SlowerFaster



Receding Horizon Enables Real-Time 
Implementation with Control Feedback
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Controller with Receding Horizon

Command

Powertrain

Map

Sensors

V2X

t t+1

1. Horizon

Predicting future 

constraints

2. Optimization

Optimal trajectory 

over horizon

3. Application

Apply first command

Optimization algorithms (solvers)

• Speed-only

• Speed + Powertrain

Feedback loop allows real-time implementation: 

• Optimization model is simplified

• Knowledge of environment is imperfect

• Future speed of preceding vehicle unknown

State

Move horizon to next step



Large Case Study with Real Routes to 
Quantify Benefits of CAV Controls
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Vehicles

Midsize, Current & 2025 Tech.

Conventional, ICE

BEV 200

Real-World Routes
Data from HERE maps

9 Suburban

9 Urban

16 Highway

10 Mixed

Scenarios

• 2 vehicles, no preceding traffic

• Traffic signal phase and timing 

info (V2I): 0% or 100%

• CAV penetration: 0%, 50%, 100%

Control

Control Description

Baseline
Baseline w/o V2I = no optimization ~ Human driver

Baseline w/ V2I = no optim. + eco-approach (EA) ~ ACC+EA

EcoDrv Spd/Accel Eco-driving with Speed/Acceleration Optimization

EcoDrv PT+Spd Eco-driving with Powertrain and Speed Optimization

Modeled in 

Autonomie

Parallel HEV



Impact of Scenario/Position 
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Lead Optimized

following Baseline
Optimized 

following Optim.

Baseline 

following Optim.

Optimized

Baseline

Vs.

Baseline

Baseline Baseline

Baseline

Vs.

Baseline

Optimized Optimized

Optimized

Vs.

Baseline

Optimized Optimized

Baseline

Vs.

Baseline

Baseline
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Highway Mixed Suburban Urban
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Lead

Optimized following
baseline

Optimized following
optimized

Baseline following
optimized

Assumptions:

HEV, current tech.

Speed+PT control

No V2I

• Greater benefits for 

lead vehicle

• Non-equipped vehicles 

could benefit too



Impact of Powertrain Type
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BEV

Conventional

HEV

Powertrain

Optimized

Baseline

Vs.

Baseline

Baseline

Current tech., 

average for all controllers,

w/ or w/o V2I

• Greatest savings achieved on urban roads

• Greatest potential for conventional and HEV



Impact of Control Types and V2I
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Baseline + V2I

EcoDrv Spd/Accel

EcoDrv Spd/Accel, V2I

EcoDrv PT+Spd

EcoDrv PT+Spd,V2I

Control

Optimized

Baseline

Vs.

Baseline

Baseline
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• Adding powertrain optimization or V2I generally leads to greater savings

• Consistency in results over large number of scenarios is challenging, due to imperfect calibration, 

partial future horizon knowledge, simplified models for optimization, etc.
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Eco-driving reduces 

accelerations and overall 

road load, reducing 

engine efficiency

Adding powertrain to the 

optimization shifts engine 

operations to higher 

efficiency areas

Baseline

Eng. Eff 31.4%

EcoDrv Spd/Accel

Eng. Eff 30.6%

EcoDrv PT+Spd

Eng. Eff 32.2%Urban road scenario

HEV, current technology, lead 

position

Eco-Driving Impacts Component 
Operations



CLOSING REMARKS
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Response to Previous Year Reviewers’ 
Comments
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Reviewer comments Response

The modeling approaches developed provided excellent tools for the 

research team to conduct the research work proposed.

We are working on making these tools available to industry and research 

community

The reviewer suggested three areas of improvement:  further human 

driver-behavior classification, statistical sufficiency (for determining 

energy impact), and the consideration of travel time as part of the 

optimization problem.

All three will be addressed in future work, provided funding (project ended in Sep. 

2019).

It was unclear to the reviewer whether the human driver used to 

validate the baseline simulations was a professional driver or 

representative of on-road driving behavior in the United States

Data used for validation was limited. New datasets are being incorporated into the 

research, including driving data from OEM fleet drivers (not professional drivers), as 

well as from customer data (e.g. EEMS086).

The lack of a baseline lead- optimized follow vehicle scenario is a 

significant oversight, according to the reviewer, given the intent to 

claim energy savings when the vehicles are in the opposite order.

All combinations of optimized/non-optimized positions were simulated: Lead (L) 

Optimized (O)/ Following (F) Non-Optimized (N) [LO/FN]; LO/FO; LN/FO; LN/FN

It was not clear to the reviewer what information about the routes, if 

any, was pulled from HERE Technologies, other than segment length 

and intersections.

Segment length, speed limit, intersection type, grade; traffic speed and curvature 

also pulled, but not used yet – integration of traffic and road curvature is part of 

future work (provided funding)

The reviewer commented that no information was provided in the 

design for forward work for FY 2019 on how traffic volume or lateral 

vehicular movements are to be addressed

Integration of traffic is subject to future funding. The plan is to insert a lead vehicle 

that serves as a proxy for traffic conditions; this would use a stochastic data-driven 

model (SVTRIP), coupled with traffic condition information (from HERE maps).



Partnerships and Collaborations
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Data for model validation of platooning trucks

On-track validation of CAV controls (EEMS082)

Other EEMS projects:

- EEMS086 => RoadRunner commercialization + human driver validation

- ANL Core Tools—Simulation (EEMS013) => Autonomie and AMBER

- ANL Core Tools—Hardware (EEMS041) => data for CAV model validation

- SMART Tools and Process Development (EEMS058)



Remaining Challenges and Barriers Post Project

▪ Limited number of routes & scenarios

– Many routes (44), but high variance in results suggest more are needed

– Sample not designed to be statistically representative of US “driving mix” 

(urban vs rural, highway vs. arterial, etc.)

– Traffic not considered in this study

▪ True optimality is hard to achieve, because of:

– Partial knowledge of the future

– Calibration of controller parameters, not optimized in this project

– Modeling errors in the models used for optimization

▪ Implementation

– Controls designed to be “real-world implementable,” but no validation yet.

– Trade-offs between energy consumption, drivability, and travel time require 

further research. 
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Proposed Future Research Beyond 
this Project

▪ Continue RoadRunner + CAV/human driver model development

– Better models thanks to driving data from OEMs + testing (EEMS086)

– Maturation of RoadRunner and public release (EEMS086)

▪ Improve eco-driving controls to work for more vehicles, leverage 

various levels of automation and connectivity, and be smarter with AI

▪ Run larger, more representative case studies, incl. with traffic

▪ Deploy and validate controls in real vehicles, in lab (vehicle-in-the-loop 

EEMS041) or on track settings (EEMS082)

21Any proposed future work is subject to change based on funding levels



Summary
▪ RoadRunner = new simulation framework for developing 

energy-efficient CAVs

▪ Validated models of human driving, truck platooning, ACC
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Developed RoadRunner

and models

Developed CAV controls 

for energy-efficiency

Evaluated energy 

impact of CAV 

controls

▪ Developed real-world implementable CAV eco-driving 

controllers:

– Optimization of powertrain AND speed 

– Multiple powertrains: conventional, EV, HEV

▪ Up to 22% energy savings for CAV in lead position w/ V2I

▪ Adding powertrain to the optimization saves up to extra 9% (pts) 

▪ V2I brings up to 10% (pts) extra savings

▪ Non-CAVs also benefit (up to 8% savings) [following a CAV]

Future research* ▪ Better and more robust controls with AI, real-world 

demonstration and validation, larger more representative 

case studies (incl. traffic)
*Any proposed future work is subject to change based on funding levels



Energy-Efficient 
Connected and 
Automated Vehicles

FOR MORE INFORMATION

Dominik Karbowski
Technical Manager, Intelligent Eco-Mobility 

Vehicle & Mobility Systems Group

https://vms.es.anl.gov

Argonne National Laboratory

dkarbowski@anl.gov 
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Zhang
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TECHNICAL
BACKUP SLIDES
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• Data-driven (    ) and analytical approach (    )

Developed a Human Driver Model
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Perception & 

Decision

Driving Regime

Update Parameter

Environment

Add Imperfection

Calculate Minimal 

Jerk Trajectory

Action

Perception & Decision (P&D) model to capture the cognitive process of human brain
▪ Determine driving regimes and their parameters 

▪ e.g., determine the acceleration time and distance after a vehicle launches from a stop

Action model to capture human driving behaviors impacting the state of the vehicle
▪ Generate vehicle state trajectories

▪ e.g., using P&D parameters, compute vehicle state trajectories for an acceleration regime



Validated Driver/Action Model over Small 
Real-World Data Sample
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)

Time (s)

• Vehicle state trajectories (incl. acceleration) show good match (but small sample)

• Model capture car-following (CF) driving

*NRMSE = Normalized Root-Mean-Squared-Error

Comparing speed vs time for braking situations – 54 cases

Case 18

Data

Model
No preceding veh.

w/ preceding veh.



Eco-Driving Affects Component 
Operations
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Baseline

Baseline + V2I

EcoDrv Spd/Accel

EcoDrv Spd/Accel, V2I

EcoDrv PT+Spd

EcoDrv PT+Spd,V2I

Control

Optimized

Baseline

Vs.

Baseline

Baseline

HEV, current tech.



Impact of VTO Technology: 2025 vs 2019 Savings 
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Optimized

Baseline

Vs.

Baseline

Baseline

Baseline

EcoDrv Spd/Accel

EcoDrv PT+Spd

Control

Difference in percentage of energy consumption savings between a 2025 and a 

2019 vehicle in lead position for various types of controllers. If positive (e.g. 10%), 

savings for CAV-2025 vs baseline-2025 are greater (e.g. by 10 percentage 

points) than savings for CAV-2019 vs baseline-2019

• For conventional, greater savings of CAV 

controls in 2025 than in 2019, thanks to 

low-load engine efficiency improvements

• HEV, EV: same savings in 2025 and 2019

• Spd+PT for HEV savings go down because 

of improvements for the baseline case 

already improve powertrain efficiency


